华夏财富网

网站首页 精选百科 > 正文

秩序的拼音(秩)

2022-08-20 15:45:51 精选百科 来源:
导读 大家好,小耶来为大家解答以上的问题。秩序的拼音,秩这个很多人还不知道,现在让我们一起来看看吧!1、矩阵的秩是线性代数中的一个概念。2、...

大家好,小耶来为大家解答以上的问题。秩序的拼音,秩这个很多人还不知道,现在让我们一起来看看吧!

1、矩阵的秩是线性代数中的一个概念。

2、在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。

3、通常表示为r(A),rk(A)或rank A。

4、在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。

5、类似地,行秩是A的线性无关的横行的极大数目。

6、通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

7、拓展资料变化规律(1)转置后秩不变(2)r(A)<=min(m,n),A是m*n型矩阵(3)r(kA)=r(A),k不等于0(4)r(A)=0 <=> A=0(5)r(A+B)<=r(A)+r(B)(6)r(AB)<=min(r(A),r(B))(7)r(A)+r(B)-n<=r(AB)证明:AB与n阶单位矩阵En构造分块矩阵|AB O||O En|A分乘下面两块矩阵加到上面两块矩阵,有|AB A||0 En|右边两块矩阵分乘-B加到左边两块矩阵,有|0 A ||-B En|所以,r(AB)+n=r(第一个矩阵)=r(最后一个矩阵)>=r(A)+r(B)即r(A)+r(B)-n<=r(AB)注:这里的n指的是A的列数。

8、这里假定A是m×n matrix。

9、特别的:A:m*n,B:n*s,AB=0 -> r(A)+r(B)<=n(8)P,Q为可逆矩阵, 则 r(PA)=r(A)=r(AQ)=r(PAQ)参考资料:百度百科 - 矩阵的秩矩阵的秩2. 向量组的秩向量组的秩:在一个m维线性空间E中,一个向量组的秩表示的是其生成的子空间的维度。

10、考虑m× n矩阵,将A的秩定义为向量组F的秩,则可以看到如此定义的A的秩就是矩阵 A的线性无关纵列的极大数目,即 A的列空间的维度(列空间是由 A的纵列生成的 F的子空间)。

11、因为列秩和行秩是相等的,我们也可以定义 A的秩为 A的行空间的维度。

12、秩是线性代数术语,在线性代数中,一个矩阵A的列秩是 A的线性无关的纵列的极大数目。

13、类似地,行秩是 A的线性无关的横行的极大数目。

14、矩阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵 A的秩。

15、通常表示为 rk(A) 或 rank A。

16、m× n矩阵的秩最大为 m和 n中的较小者。

17、有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足的。

18、拓展资料:用向量组的秩定义向量组的秩:在一个m维线性空间E中,一个向量组的秩表示的是其生成的子空间的维度。

19、考虑m× n矩阵,将A的秩定义为向量组F的秩,则可以看到如此定义的A的秩就是矩阵 A的线性无关纵列的极大数目,即 A的列空间的维度(列空间是由 A的纵列生成的 F的子空间)。

20、因为列秩和行秩是相等的,我们也可以定义 A的秩为 A的行空间的维度。

21、用线性映射定义考虑线性映射:对于每个矩阵A,fA都是一个线性映射,同时,对每个的 线性映射f,都存在矩阵A使得 f= fA。

22、也就是说,映射是一个同构映射。

23、所以一个矩阵 A的秩还可定义为fA的像的维度(像与核的讨论参见线性映射)。

24、矩阵 A称为 fA的变换矩阵。

25、这个定义的好处是适用于任何线性映射而不需要指定矩阵,因为每个线性映射有且仅有一个矩阵与其对应。

26、秩还可以定义为n减 f的核的维度;秩-零化度定理声称它等于 f的像的维度。

27、计算矩阵 A的秩的最容易的方式是高斯消去法。

28、高斯算法生成的 A的行梯阵形式有同 A一样的秩,它的秩就是非零行的数目。

29、例如考虑 4 × 4 矩阵我们看到第 2 纵列是第 1 纵列的两倍,而第 4 纵列等于第 1 和第 3 纵列的总和。

30、第1 和第 3 纵列是线性无关的,所以 A的秩是 2。

31、这可以用高斯算法验证。

32、它生成下列 A的行梯阵形式:它有两个非零的横行。

33、在应用在计算机上的浮点数的时候,基本高斯消去(LU分解)可能是不稳定的,应当使用秩启示(revealing)分解。

34、一个有效的替代者是奇异值分解(SVD),但还有更少代价的选择,比如有支点(pivoting)的QR分解,它也比高斯消去在数值上更强壮。

35、秩的数值判定要求对一个值比如来自 SVD 的一个奇异值是否为零的依据,实际选择依赖于矩阵和应用二者。

36、计算矩阵的秩的一个有用应用是计算线性方程组解的数目。

37、如果系数矩阵的秩等于增广矩阵的秩,则方程组有解。

38、在这种情况下,如果它的秩等于方程(未知数)的数目,则方程有唯一解;如果秩小于未知数个数,则有无穷多个解。

39、秩(线性代数术语)-百度百科就是矩阵的一个数字特征!他是一个矩阵的固有属性!就是指最大的不为零的子式的行数或列数!一个矩阵,在里面用某几行或者某几列元素组成行列式,找到行列式不为零的。

40、在不为零的里面找“体积”最大的那个行列式。

41、它的行数(列数)就是秩。

本文到此分享完毕,希望对大家有所帮助。


版权说明: 本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。


标签:




热点推荐
热评文章
随机文章