华夏财富网

网站首页 精选百科 > 正文

如何判断函数拐点(函数拐点)

2022-09-01 19:32:52 精选百科 来源:
导读 大家好,小耶来为大家解答以上的问题。如何判断函数拐点,函数拐点这个很多人还不知道,现在让我们一起来看看吧!1、若函数y=f(x)在c点可导,...

大家好,小耶来为大家解答以上的问题。如何判断函数拐点,函数拐点这个很多人还不知道,现在让我们一起来看看吧!

1、若函数y=f(x)在c点可导,且在点c一侧是凸,另一侧是凹,则称c是函数y=f(x)的拐点。

2、我们可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:(1)求f'(x);(2)令f'(x)=0,解出此方程在区间I内的实根,并求出在区间I内f'(x)不存在的点;(3)对于(2)中求出的每一个实根或二阶导数不存在的点x0,检查f'(x)在x0左右两侧邻近的符号,那么当两侧的符号相反时,点(x0,f(x0))是拐点,当两侧的符号相同时,点(x0,f(x0))不是拐点。

3、扩展资料必要条件,设函数f(x)在点的某领域内具有二阶连续导数,若(,f())是曲线的拐点,则,但反之不成立。

4、第一充分条件直接根据拐点的定义,可以得到曲线存在拐点的第一充分条件。

5、设函数f(x)在点的某邻域内具有二阶连续导数,若的两侧异号,则(,f())是曲线y=f(x)的一个拐点;若的两侧同号,则(,f())不是曲线的拐点。

6、拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。

7、若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。

8、可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:⑴求f'(x);⑵令f'(x)=0,解出此方程在区间I内的实根,并求出在区间I内f'(x)不存在的点;⑶对于⑵中求出的每一个实根或二阶导数不存在的点x,检查f'(x)在这个点x左右两侧邻近的符号,那么当两侧的符号相反时,这个点(x,f(x))是拐点,当两侧的符号相同时,(x,f(x))不是拐点。

9、扩展资料:类似术语:驻点相关对于二维函数的图像,驻点的切平面平行于xy平面。

10、值得注意的是,一个函数的驻点不一定是这个函数的极值点(考虑到这一点左右一阶导数符号不改变的情况);反过来,在某设定区域内,一个函数的极值点也不一定是这个函数的驻点(考虑到边界条件),驻点(红色)与拐点(蓝色),这图像的驻点都是局部极大值或局部极小值。

11、若函数y=f(x)在c点可导,且在点c一侧是凸,另一侧是凹,则称c是函数y=f(x)的拐点。

12、我们可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:  (1)求f'(x);  (2)令f'(x)=0,解出此方程在区间I内的实根,并求出在区间I内f'(x)不存在的点;  (3)对于(2)中求出的每一个实根或二阶导数不存在的点x0,检查f'(x)在x0左右两侧邻近的符号,那么当两侧的符号相反时,点(x0,f(x0))是拐点,当两侧的符号相同时,点(x0,f(x0))不是拐点。

13、若函数y=f(x)在c点可导,且在点c一侧是凸,另一侧是凹,则称c是函数y=f(x)的拐点。

14、我们可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:(1)求f'(x);(2)令f'(x)=0,解出此方程在区间I内的实根,并求出在区间I内f'(x)不存在的点;(3)对于(2)中求出的每一个实根或二阶导数不存在的点x0,检查f'(x)在x0左右两侧邻近的符号,那么当两侧的符号相反时,点(x0,f(x0))是拐点,当两侧的符号相同时,点(x0,f(x0))不是拐点二阶导数为0的点叫拐点。

本文到此分享完毕,希望对大家有所帮助。


版权说明: 本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。


标签:




热点推荐
热评文章
随机文章